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This article describes the work of Harry Schultz Vandiver, Derrick
Henry Lehmer, and Emma Lehmer on calculations related with proofs
of Fermat’s last theorem. This story sheds light on ideological and
institutional aspects of activity in number theory in the US during the
20th century, and on the incursion of computer-assisted methods into
pure fields of mathematical research.

The advent of the electronic digital computer
opened a new era of unprecedented possibil-
ities for large-scale number crunching. Begin-
ning in the late 1940s, these gradually increas-
ing possibilities were duly pursued in many
branches of science. Some of them, like
meteorology, geophysics, or engineering sci-
ence, underwent deep and quick transforma-
tions. Pure mathematical disciplines such as
number theory can be counted among the less
receptive audiences for these newly opened
possibilities. One way to account for this
somewhat ironic situation is to examine the
main research trends that shaped progress in
the algebraic theory of numbers from the
second half of the 19th century on. Central
to such trends was a conscious attempt to
develop powerful conceptual tools for solving
theoretical problems ‘‘purely by ideas’’ and
with ‘‘a minimum of blind calculations.’’
Indeed, this became an ethos that gradually
came to dominate most fields of pure mathe-
matics after 1930.

This conceptual approach was developed
by leading German mathematicians such as
Richard Dedekind (1831–1916) and David
Hilbert (1862–1943) on the basis of ideas that
first appeared in the work of the great Berlin
number-theorist, Ernst E. Kummer (1810–
1893), in the 1850s. But Kummer’s own work
actually features many massive computations
with particular cases that would eventually
disappear from the algebraic theory of num-
bers by the turn of the 20th century. Among
other things, Kummer’s research led in 1859 to
a famous result, namely, that Fermat’s last
theorem is true for all prime exponents less

than 100. Extending this result beyond 100
involved, above all, straightforward (if tedious)
computations. Yet, little work was devoted to
such computations before 1920, and even
then, this remained an essentially marginal
trend within number theory.

Thus, when electronic computers started to
became available in the late 1940s, few
mathematicians working in the core, ‘‘pure’’
fields of the discipline incorporated them in
their research agendas. Even fewer did so for
Fermat’s last theorem. Harry Schultz Vandiver
(1882–1973) was one of the few to do so. He
joined forces with the couple Derrick Henry
Lehmer (1905–1991), and Emma Lehmer
(1906–2007). The Lehmers possessed the nec-
essary expertise that combined deep knowl-
edge in both number theory and the use of
electronic computers. They also had the
institutional connections that facilitated the
use of computing resources with SWAC (Stan-
dards Western Automatic Computer) on be-
half of this project.

This article describes the work of these three
mathematicians in connection with Fermat’s
last theorem, and how they came to introduce
electronic computers to research on that
problem.

From Sophie Germain to Kummer
Sometime after 1630, Pierre de Fermat wrote

in the margins of a book that the equation xn +
yn 5 zn has no nontrivial integer solutions
x,y,z, when n . 2. He also claimed to have
found a proof for this fact, which the margins
of his book were too narrow to contain.
Eventually, this unproved conjecture became
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known as Fermat’s last theorem. Attempts to
prove it, and indeed to find Fermat’s putative
proof, were unsuccessful. The problem increas-
ingly attracted the curiosity of mathematicians
and amateurs alike, while becoming the object
of many legends. The mythical dimension of
its story was greatly heightened after the grand
finale provided by the brilliant, surprising, and
highly complex proof, advanced in 1994 by
Princeton mathematician Andrew Wiles that
turned the theorem, and many names associ-
ated with it, into the focus of unusual public
attention.1 But as a matter of fact, an attentive
reading of the historical record shows that
from its very inception, this was an open
conjecture to which few mathematicians (and
above all few outstanding number theorists)
dedicated sustained research efforts worthy of
that name—the kind of attention they devoted
was mostly passive.

Born on the physical margins of a book, for
more than 350 years Fermat’s theorem essen-
tially remained at the margins of the mathe-
matics profession, brought occasionally into
the limelight before the work of Wiles.2 Still,
the theorem’s history is important in many
senses, and this is also the case concerning the
question of the relationship between concep-
tual breakthroughs and intense calculation in
mathematics.

In the early 19th century, some of the
sporadic efforts toward proving the theorem
yield interesting results that set the scene for
the vast majority of subsequent contributions
(prior to Wiles’ proof that eventually came
from a completely different direction). In this
section, I cursorily present those results and
the concepts associated with them, inasmuch
as they are necessary for understanding the
starting point of Vandiver’s work.

An early, significant result specifically aris-
ing from attempts to prove the theorem was
advanced by Sophie Germain (1776–1831). As
a woman, Germain initially worked outside
the mathematical establishment of her time,
and corresponded with Carl Friedrich Gauss
using a pseudonym. The theorem that was
later associated with her name implied that
Fermat’s last theorem can be fully elucidated
by handling the following two separate cases:

N Case I—none of the integers x,y,z is divis-
ible by p;

N Case II—one, and only one, of the integers
x,y,z is divisible by p.

Germain proved case I for all primes under
197.

Adrian Marie Legendre (1752–1833) was a
prominent French mathematician who was
among the first to acknowledge Germain’s
talents. He corresponded with her and tried to
use her methods for proving additional cases.
Case II turned out to be much more difficult
from the beginning. For p 5 5, case II was
proved only in 1825 in separate, complementa-
ry proofs of Legendre and Peter Lejeune Dirich-
let (1805–1859). Dirichlet also proved in 1832
case II for n 5 14, and he did so while trying to
prove it for p 5 7. This latter case turned out to
be especially difficult, and it was finally proved
in 1839 by Gabriel Lamé (1795–1870).3

The next significant contribution came
from Kummer. His line of attack originated
in his efforts to address what he considered to
be the most important question in number
theory, namely, the so-called higher reciproc-
ity laws. Kummer’s interest in Fermat’s last
theorem was only ancillary to this, but he
relied on an important insight discovered as
part of these efforts, namely the identification
of a special class of prime numbers, later called
‘‘regular.’’ In 1850, Kummer proved that the
theorem is valid for all regular primes.

Kummer also provided an algorithm based
on the use of so-called Bernoulli numbers, Bn,
in order to tell for a given prime number
whether or not it is regular. Using the values of
Bn known at the time, he worked out all the
computations necessary to see the only non-
regular primes he found below 164 were 37,
59, 67, 101, 103, 131, 149, and 157. He did not
go beyond 164, possibly because of the
complexity and length of the calculations
involved. At any rate, Kummer initially be-
lieved that there would be infinitely many
regular primes, and indeed that only a few
primes would be irregular.

Kummer naturally asked himself how to go
about the case of irregular primes. He brilliant-
ly developed three criteria that provided a
sufficient condition for the validity of Fermat’s
last theorem for a given irregular prime p.
Checking the criteria for any given p involves a
considerable computational effort, but they do
yield clear results. Kummer was by no means
intimidated by the need to make the necessary
calculations. And, indeed, in 1857 he pub-
lished a famous article that broke new ground,
both conceptually and in terms of specific
calculations4 It introduced the three said
criteria and proved that each of the three
irregular primes smaller than 100 satisfies
them. He thus achieved the impressive result
that Fermat’s last theorem is valid for all
exponents under 100.
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Kummer never published his calculations
nor explained any specific formula that per-
haps facilitated these calculations. Clearly, the
latter were lengthy and demanding. Indeed,
Kummer’s work turned out to contain some
relatively minor inaccuracies, but this was
found out for the first time only in 1920 by
Vandiver. It was clear at this point, at any rate,
that Kummer’s results might be extended with
additional calculations involving Bernoulli
numbers. In particular, it would be necessary
to add new values to the list of known ones.
Leonhard Euler had initially calculated values
up to B15. After his work, the values up to B31

were calculated in 1840 by Martin Ohm
(1792–1872), the younger brother of the
physicist Georg Ohm.5 These values were
known to Kummer, and his results of 1857
relied on them. Thereafter, additional values
were calculated only much later, by John
Couch Adams (1819–1892) in 1878 (up to
B62) and by an obscure Russian mathematician
Sergei Serebrenikoff in 1906 (up to B92). To be
sure, neither of them calculated these values as
part of an effort to prove Fermat’s last
theorem.6 Adams, for instance, was a leading
British astronomer. His calculations were
related with his involvement in the formula-
tion and publication of astronomical tables.
Despite their possible application to Fermat’s
last theorem, no other mathematician seems
to have thought that calculating further values
was worth the effort.

Computing from Kummer to Vandiver
Following Kummer, it was possible in

principle to continue the search for irregular
primes. For each new irregular prime found,
one might check if Kummer’s criteria applied.
As the criteria did not suffice to prove all cases,
it was evident that there was also room for
refining and further elaborating criteria of this
kind, in order to find more efficient tests for a
given prime irregular exponent. As it hap-
pened, however, very little research was done
in this direction in the following decades. As
an example, an important fact about irregular
prime numbers—namely, that there are infi-
nitely many of them—was proved only in
1915. The proof did not contain any concep-
tual innovation, and it was published by an
unknown student in an obscure Danish
journal.7 The first report of this result in an
English publication appeared only in 1928.8

On the other hand, Kummer’s theory of
ideal numbers opened a new conceptual
direction, which served as a starting point for
important developments in number theory in

the second half of the 19th century, although
these developments had little to do with
proving Fermat’s last theorem. Mainly under
the influence of an approach embodied in
Dedekind’s work on the theory of ideals, new
ideas on the theory of algebraic fields gradually
developed in a direction that explicitly dis-
tanced itself form the kind of calculational
efforts developed by Kummer himself. At the
turn of the 20th century, particularly in the
wake of Hilbert’s influential Zahlbericht [Re-
port on Numbers], published in 1897, a clear
emphasis on the ‘‘conceptual’’ perspective
became dominant. Results based on specific
calculations with particular examples were not
favored under this view, which was most
clearly presented in the introduction to the
Zahlbericht. Hilbert thus wrote:

It is clear that the theory of these Kummer

fields represents the highest peak reached on

the mountain of today’s knowledge of arith-

metic; from it we look out on the wide

panorama of the whole explored domain since

almost all essential ideas and concepts of field

theory, at least in a special setting, find an

application in the proof of the higher reci-

procity laws. I have tried to avoid Kummer’s

elaborate computational machinery, so that

here … proof can be completed not by

calculations but purely by ideas.9

The deep influence of the approach espoused
by Hilbert and by some of his colleagues helps
explain why the way originally opened by
Kummer, or other methods involving lengthy
calculations of particular cases, eventually
become marginal to the mainstream of 20th-
century number theory.

Back in the second part of the 19th century,
however, there was still much number-theo-
retical activity, especially in France and Bel-
gium, where calculations with individual cases
was central. As part of this kind of research, a
few results pertaining to the theorem were
published between 1856 and 1915. These
involved varying degrees of mathematical
sophistication and represented little real pro-
gress over what Kummer had already
achieved.10 Three illustrative examples con-
cerning case I are the following:

N Edmond Maillet proved in 1897 that case I
is valid for p , 223,

N Dimitry Mirimanoff (1861–1945) extended
this in 1904 to p , 257,

N In 1908, Leonard Eugene Dickson (1874–
1954) introduced new methods to prove
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that case I is true for every exponent p ,

7000.

For case II, almost nothing new was achieved.

A different direction of progress started
with the work of Arthur Wieferich (1884–
1954), who proved that if p were an exponent
for which case I is valid, then the following
identity would hold: 2p21 ; 1 (mod p2).
Mirimanoff in 1910 extended this result by
proving that the same p would satisfy 3p21 ; 1
(mod p2). Subsequently, the same congruence
mp21 ; 1 (mod p2) was proved true in relation
with case I for higher values of m in a series of
works, including the following:

N In 1912, Philip Furtwängler (1869–1940)
proved that the condition r p21 ; 1 (mod p2)
holds true for every factor r of x (in case x is
not divisible by p), and for every factor r of
x2 2 y2 (in case x2 2 y2 is not divisible by p),

N In 1914, Vandiver proved the congruence
for 5p21,

N In 1914, Georg Ferdinand Frobenius (1849–
1917) proved the congruence for 11p21 and
for 17p21.

Now, here is where mechanized calculation
makes its appearance, albeit still in a modest
way. Based on works such as just mentioned, it
became possible to determine a lower bound
for the value of integers for which the
Diophantine equation associated with case I
could be satisfied. This required, however,
increased amounts of rather complex calcula-
tions. In 1913, Waldemar Meissner combined
Furtwängler’s general theorem with recent
results known through tables that had been
obtained by arduous calculations.11 Meissner
referred to a recent Russian textbook on
number theory, written by Ukrainian mathe-
matician Dimitri Grawe (1863–1939), which
contained a table of residues modulo p of the
ratios 2p21 2 1/p, for all prime numbers p ,

1000. Grawe had stated his belief that Wiefer-
ich’s congruence holds for no prime p. ‘‘Had
he continued to the next 1000,’’ Meissner
wrote, ‘‘he would have found that the prime
number p 5 1093 does satisfy the congruence.
Indeed, this is the smallest number under 2000
to satisfy the congruence.’’

The next related result came only in 1925
when a Dutch high school teacher, N.G.W.H.
Beeger (1884–1965), proved that between
2,000 and 14,000, the only exponent p that
satisfies the Wieferich congruence is 3,511.12

Beeger explained the method of his calcula-
tions, his checking, and why he was so

confident of them. Moreover, he disclosed,
that he ‘‘constantly used W.J. Odhner’s
‘Brunsviga’ calculating machine.’’ Given the
calculations’ complexity, one suspects that
Meissner may also have used some kind of
machine, but he never said as much. So, with
Beeger we find the first explicit testimony
about a mechanical device being used in
relation with Fermat’s last theorem.13 Beeger
returned to this problem once again in 1939,
and, using Dickson’s result of 1907, he proved
that case I is valid for exponents up to
16,000,14 including both regular and irregular
prime exponents.

Vandiver, the Lehmers, and Fermat
Andrew Wiles devoted no fewer than eight

full years of his professional life to work out a
complete a proof of Fermat’s last theorem.
Before him, and despite the legendary status of
the problem, there was only one other profes-
sional mathematician—Harry Schultz Vandi-
ver—to have ever spent a significant part of his
career pursuing the same task while achieving
many nontrivial results. Although Vandiver
published in other (related) fields of research
as well, such as cyclotomic fields, associative
algebras, ring theory, reciprocity, and quadrat-
ic forms, Vandiver devoted his entire profes-
sional life to a well-known problem that
aroused curiosity but that had remained on
the margins of number theory for decades.
Together with some conceptual advances over
his predecessors, Vandiver undertook a re-
search program involving massive calculations
with individual cases. When he aided himself
with electromechanical—and later on, elec-
tronic—devices for his calculations, he was
certainly in the minority of number-theorists
who would consider this an exercise worthy of
a true mathematician’s time.

Vandiver’s first article on Fermat’s last
theorem appeared in 1914 in Crelle’s Journal.15

As already mentioned, it comprised an exten-
sion to base 5 of the Wieferich-Mirimanoff
type of criterion. Over the years, he continued
to present short communications to the
American Mathematical Society (AMS) con-
taining improvements and simplifications of
Kummer’s criteria or of results related to his
own 1914 article. Thus, for instance, in 1920
he identified and then corrected a mistake in a
central argument of Kummer’s important
1857 article.16

In 1931, Vandiver was awarded the first
Cole prize established by the AMS for out-
standing research in number theory. This
came in recognition to a series of works on
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Fermat’s last theorem published beginning in
1926 and summarized in a detailed article
published in 1929 in the Transactions of the
AMS.17 Among other things, this work implied
the first meaningful advance since the time of
Kummer in dealing with case II. It took care of,
among other things, case p 5 157, which could
not be accounted for by Kummer’s criteria.
Vandiver undertook to develop new criteria that
would yield a proof for this case, and in doing
so, he actually extended the validity up to p 5

211. In fact, even before the article appeared in
print, Vandiver had realized that his arguments
were valid for exponents p , 269.

Besides refining the Kummer-type criteria
for proving the theorem in the case of irregular
exponents, Vandiver also worked on the side
of the Bernoulli numbers. He proved several
congruences involving such numbers in order
to allow more efficient calculations related to
the criteria. In addition, together with his
collaborators, he sought ways to improve the
methods for calculating increasingly high
instances of Bernoulli numbers. He also coor-
dinated the work of graduate students who
would perform specific calculations for sets of
cases they were assigned. The students were
aided by the use of Monroe and Marchant
electromechanical calculators. Vandiver also
relied on existing mathematical tables of

various kinds, but he systematically reassured
readers of his articles that these tables had
been rechecked independently by his compar-
ing one with the other.

In 1937, Vandiver published his first work
in collaboration with the Lehmers. That this
collaboration took place at all was far from a
coincidence. Dick Lehmer was greatly influ-
enced by the work of his father, a University of
California, Berkeley, mathematician, Derrick
Norman Lehmer (1867–1938). The latter pub-
lished in 1909 a Factor Table for the First Ten
Millions and in 1914 a List of Prime Numbers
from 1 to 10,006,721.18 As an undergraduate,
Dick built a number sieve based on a set of
bicycle chains hanging on sprockets attached
to a shaft and turned by an electric motor. In
1929, Derrick Norman published his Factor
Stencils that gave a method of factorizing a
number using cards with holes punched in
them. Dick was directly involved in this
project. In 1932, Dick constructed, now with
his father’s help and encouragement, a highly
ingenious photoelectric number sieve.19 The
use of mechanical or other aids to computa-
tion was a main theme in Dick Lehmer’s
professional life, and so was the question of
factorizations and primes. In the 1930s, he
devised the famous Lucas-Lehmer primality
test for Mersenne numbers.

It was also through his father that Dick (see
Figure 1) came to know his future wife and
mathematical partner of a lifetime, Emma
Trotskaia (see Figure 2). This occurred when
she was an undergraduate student at Berkeley
attending Derrick Norman’s class. Dick went
to Chicago for doctoral studies with Dickson,
but stayed there for only one year. The couple
married the year Emma graduated and moved
to Brown University, where in 1930 Dick
completed his PhD under Jacob D. Tamarkin
while Emma was awarded her MSc.20

Emma and Dick moved to Lehigh Univer-
sity in 1932, and it is there that the collabo-
ration with Vandiver (see Figure 3) began.
The work by the Lehmers was funded by a
Penrose Scholarship granted to Vandiver by
the American Philosophical Society. Part of the
money went to renting a 10-10-20 electric
Monroe machine (http://www.xnumber.com/
xnumber/pic_monroe_electr.htm) at a cost of
US$25 per month. The rest helped pay the
Lehmers, even though this collided with the
terms of Dick’s employment at Lehigh. In
1934, Dick Lehmer wrote to Vandiver:

As I see the situation, you have to assure the
APS that I am doing at least 1/3 of the work,
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whereas I have to assure Lehigh University

that I am merely supervising the work and

only spending a few hours a week on this

research, printed accounts of the project to

the contrary notwithstanding. I think that

both of these may be possible although they

are somewhat contradictory.21

At the same time, he reassured Vandiver that
‘‘after a little experimenting the work of
computing the Bi’s will become quite routine.’’
Dick had little doubt that if he could ‘‘get Mrs.
L. to do more than her share of the work (while
I teach freshmen)’’ progress would come soon.

An immediate concern addressed by the
Lehmers related to the improvement of the
recurrence formulas for calculating Bernoulli
numbers. Dick devised a new method based on
‘‘lacunary recurrence,’’ namely, one in which
only some of the previous values are used for
calculating each new one.22 He took as
reference the tables prepared by Adams and
by Serebrenikoff (whom he dubbed ‘‘intrepid
calculators’’), and applied his newly developed
method to check, in the first place, that the
results coincided. Then, he went on to calcu-
late values of up to B196.

In the correspondence of these years,
important topics arise that attest to the
Lehmers’ clear conception of what a properly
implemented computing procedure would
comprise. For example, they were always
sensitive to the degree of efficiency of the
methods used for calculations, the estimated
timings, the reliability of the results, and, no
less than that, the clarity of presentation. As
Dick wrote in 1934:

We have B96 and are well on the way towards

B99. I think that the average time required for

each B will simmer down to abut 20 hours.

About 1/3 of this time is used in typing results

and 1/10 of it in checking. Of course, the final

check (the exact division of a 250-digit

number by a 50-digit number) would be

sufficient, but coming as it does at the end

of 20 hours it is necessary to check more

frequently. We use as an additional check the

casting out of 1000000001.23

Calculating the value of B105—he reported a
few weeks later—had required 70 hours to
complete.

But the question that more recurrently
appears in these as well as in later letters
concerns the matter of publication: who
would want to publish this kind of results,
and what exactly should be published? What
tables? How many results for each case? As a

matter of fact, Dick understood that the very
task of calculating new values of Bernoulli
numbers was not one that his mathematical
colleagues would hold in high esteem. He thus
opened his 1935 article by trying to justify the
task itself. He wrote:

The reader may question the utility of tabu-

lating more than 93 Bernoulli numbers, and

hence the need of giving formulas for extend-

ing their calculations. It is true that for the

ordinary purposes of analysis, for example in

the asymptotic series of Euler MacLaurin

summation formula, a dozen Bernoulli num-

bers suffice. There are other problems, howev-

er, which depend upon more subtle properties
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of the Bernoulli numbers, such as the divisi-

bility by a given prime. Examples of such

problems are the second case of Fermat’s Last

Theorem and the Riemann Zeta-function

hypothesis. Our knowledge as to the divisibil-

ity properties of the Bernoulli numbers is still

quite primitive and it would be highly desir-

able to add more to it even if the knowledge

thus gained be purely empirical.24

Still in connection with this issue, it should
be noted that the actual values he calculated
were published in the then-new Duke Mathe-
matical Journal.25 This not-accidental choice
concerned the contents of the article and the
reactions it elicited. As Dick wrote to Vandiver:

I had tried the Annals but received an

immediate rejection from Lefschetz on the

grounds that it is against the policy of the

Annals to publish tables. He suggested that the

tables be deposited with the AMS library or

else published in some obscure journal. So I

tried the Duke journal.26

Solomon Lefschetz (1884–1972) was at the
time president of the AMS and editor of the
prestigious Annals of Mathematics. His reported
reaction merely hints to the much broader and
complex phenomena of the status within the
mathematical community (in the US and
elsewhere) of mathematical tables, their elab-
oration, and publication.27 Evidently, Vandi-
ver and the Lehmers did not view this question
eye-to-eye with the mathematical establish-
ment. They published the results of their
collaboration in Duke and in the Proceedings
of the National Academy of Science (PNAS),
rather than in mainstream mathematical
journals of the time. In fact, Dick Lehmer’s
institutional connections sensibly differed
from those of most mathematicians across
the country. As will be explained, he worked
for the National Bureau of Standards, and in
1938 he was involved in the committee of the
Mathematical Tables Project, sponsored by the
NBS.28 In addition, he was among the found-
ers of the new journal, Mathematical Tables and
Other Aids to Computation, published by the
National Research Council beginning in 1943.
In 1960, the journal’s name was changed to
Mathematics of Computation, and it was only in
1962 that the AMS became associated with its
publication. When one considers today the
professional prestige that this journal has
come to achieve, it is evident that its changing
status reflects an interesting underlying (and
yet to be told) story of six decades of change in
scientific values, in approaches to research,

and in institutional structure in American
mathematics.

The first results of the Vandiver–Lehmer
collaboration were also published in Duke.
Vandiver was listed as the author, and he
explicitly acknowledged the collaboration of
the Lehmers. This article established the
theorem for exponents p, 2 , p , 619, except
possibly for 587.29 The latter case raised some
computational difficulties which were never-
theless soon overcome and the result pub-
lished in 1939.30 It was also clear, by this time,
that above 619 the calculations became pro-
hibitively long and laborious for being carried
out with a desktop calculator.

In 1940, Dick accepted a position offered to
him at Berkeley. Then, in 1945 Dick went to
work on the ENIAC project at the Aberdeen
Proving Ground. Of course, most of his time
was devoted to the task of computing trajec-
tories for ballistics problems, but the Lehmers
used some of the available time over the
weekends to questions related with number
theory. Above all, this period served as an
important training in the use of electronic
computers.

In 1950, Dick lost his position at Berkeley
for a time, resulting from his refusal to take the
loyalty oath—an anti-communist oath re-
quired of, for example, all University of
California employees during the McCarthy
era. This did not become as acute a problem for
him as it was for some others, because he
became director of the Institute for Numerical
Analysis at the NBS. This period, of consider-
able historical interest in many respects, also
opened the way to Dick’s involvement with
SWAC: the Standards Western Automatic
Computer (see Figure 4), at the NBS.31

SWAC and number theory
Problems in pure mathematics, and espe-

cially in fields like number theory, were by no
means among the first to be addressed during
the early years of electronic computers. Main-
stream mathematicians working in ‘‘pure’’
fields, did not show much interest in the
possibilities opened for their disciplines by this
new technology. In addition, operational costs
of the new machines had to be justified with
more mundane pursuits than those provided
by, say, number theory. And yet, some
classical problems in mathematics were soon
seen as a challenging test for computing power
as well as for programming skills with the new
machines. Thus, for instance, as early as 1949
John von Neumann suggested using ENIAC to
calculate the values of p and e to many decimal
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places. The idea was to develop tests for
measuring randomness in the distribution of
digits appearing in these two cases.32 The
problem of Mersenne primes, Mn 5 2n 2 1,
and the Riemann conjecture also attracted
attention from very early on. Alan Turing
addressed both problems at the University of
Manchester in the years 1951–1952. The
Lehmers were, of course, natural candidates
to pursue these kinds of problems with
electronic computers.33 In 1952, they har-
nessed the new power provided by SWAC,
and, joining forces with Raphael Robinson,
they found out that M521 was prime. They were
happy to declare that: ‘‘Each minute of
machine time is equivalent to more than a
year’s work for a person using a desktop
calculator.’’34

Fermat’s last theorem, a problem to which
mainstream number-theorists had devoted so
little interest since the time of Kummer, was
also relatively late in receiving the attention of
those who applied electronic computers to the
field. One can only speculate how much
longer it might have taken, if at all, were it
not for the previous collaboration between
Vandiver and the Lehmers. Although it repre-
sented a natural continuation of the work
done between 1935 and 1940, with a new and
much more powerful technology at hand,
Vandiver did not immediately think that
SWAC should be used for this purpose. Emma
Lehmer continually informed Vandiver about
progress on computations with Mersenne
primes, and explicitly wrote him that ‘‘if you
have some pet problem you would like to run,
I might try my hand at coding it and maybe we
can run it after hours.’’35 Amazingly, as late as
April 1952, Vandiver replied that ‘‘no particu-
larly numerical problem occurs to me that
may be handled by the machine; but if one
does, I’ll let you know.’’36

Actual work on the theorem started in June
1952, and the results of this joint research were
published in 1954. Work was done in two
parts:

N identifying all the irregular primes below
2,000; and

N checking that each irregular prime thus
found satisfied necessary criteria for ensur-
ing that the theorem held for that case.

The criteria introduced by Vandiver in
1929, and which improved on Kummer’s,
were not easily turned into programmable
algorithms. Thus, Vandiver was required to
modify them accordingly, which he did very

successfully. For reasons of space, the criteria
and the interesting way in which they were
implemented in SWAC cannot be given in
detail in this article.37

The irregular primes found in the first part
were given as output by SWAC in the form of
punched cards indicating all irregular primes.
The SWAC output also listed the ‘‘ranks of
irregularity’’—namely, all indexes ai (ai # (p 2

3)/2) of Bernoulli numbers Bai divisible by p.
The largest rank found in the cases examined
was three.

In June 1953, the Lehmers cabled Vandiver
and announced:

SWAC discovers new irregular primes 389,
491, 613, 619, corresponding to Bernoulli
subscripts 100, 168, 261, 214. Primes like 619
require 90 seconds.38

Actually, for values of p , 619, the results
were checked against those obtained previous-
ly, in 1937. In principle, the results coincided,
but with some exceptions: p 5 389 and p 5 613
were now found to be irregular. In addition,
for p 5 491, which was already known as
irregular, a new index a was found, a 5 119.
These results were rechecked and found to be
correct. It was discovered that out of the 302
prime numbers under 2,000, 118 were regular.

The second part of the procedure consisted
in applying various known congruences in-
volving Bernoulli numbers and Kummer-like
criteria. These allowed checking the validity of
the theorem for each of the irregular primes
identified in the first part. The algorithm
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devised for this second part was long and
complicated, but it yielded a clear result for
any given irregular prime exponent. What
proved to be really stimulating for Vandiver
and the Lehmers was the rather efficient way
in which SWAC, with a proper codification of
this algorithm, made this calculation: for the
largest prime tested, SWAC had to run for only
three minutes.

Vandiver also stressed how important these
results were for the theory of cyclotomic fields.
‘‘I do not think any specialist in algebraic
numbers would have predicted,’’ he wrote to
the Lehmers, ‘‘the outcome of the calcula-
tions.’’ By this he meant, above all, the high
percentage of regular primes under 2,000.
Previously, since the irregulars were so dense
under 600, Vandiver had assumed that ‘‘the
regular primes would fade out later.’’39 But
now things looked different, and this had
important consequences for the classification
of cyclotomic fields. This problem seems to
have been of less interest to the Lehmers, but
gradually they became fully acquainted with
it, to Vandiver’s delight:

I am surprised that the Lehmers seem to be
sort of frightened at what they call the ‘‘lore of

cyclotomic fields.’’ I recall that you were a bit

flabbergasted at the apparent complexity of
the formula that Kummer used as well as

myself for testing the irregular primes; but

when I started to explain it to you and began

my discussion of possible simplifications, the
Lehmers (d … n them) generally saw the tricks

that I was introducing in advance of my

explanations. …Yes, I am surprised. …

Yours never …40

And Vandiver repeatedly discussed in his
letters the exact manner in which this rele-
vance of the results for cyclotomic fields
should be properly stressed. A statement was
finally published at the end of the article, in
the following words:

Irrespective of whether Fermat’s Last Theorem

is ever proved or disproved, the contents of

the table given above constitute a permanent
addition to our knowledge of cyclotomic

fields, as its use will greatly simplify and

facilitate the study of the units and ideals in
such fields as defined for any p , 2000.41

An additional point frequently discussed in
the correspondence concerned, as in their
previous joint article, the expected venue of
publication. The National Academy, Vandiver
wrote to Emma:

has a rule to the effect that any member

presenting a paper for publication in the

Proceedings is entitled to have it published;
and in the twenty years since I have been a

member, anything I have presented by

whatever author or authors has been pub-
lished. However, there seems to be exceptions

to all rules and maybe if they see the name

Lehmer on the paper, they will raise a

question.42

One wonders how seriously this remark was
meant and exactly how one must read what it
says about the professional status of Lehmer
among mathematicians. The fact is that the
article was indeed published in the Academy
Proceedings, and only there. Contrary to what
was often the case with works appearing in
the Proceedings, this work was never repub-
lished in a mainstream, purely mathematical
journal.

Vandiver and the Lehmers continued to
work on extending their results. This involved
difficulties at both the institutional and math-
ematical levels. First there was the problem of
being granted computing time with the
SWAC. As Emma wrote to Vandiver:

Tonight they are continuing the irregular

primes run beyond 2000. Just how far we will
be able to go, or what will be done after we

leave is hard to predict at the moment because

the whole place is in a state of uncertainty. If
the Institute [for Numerical Analysis] goes to

UCLA, as is hoped at the moment, then

doubtless research time will be available for

such projects…. Meanwhile, in the next two
weeks we might be able to knock off a few

more primes. We figure it would take 40

SWAC hours to get up to l53000, and at

l54000 it would take an hour to examine each
prime for regularity, so that there is not much

hope for going beyond 5000 even with a

formal arrangement to pay for the comput-
ing.43

Indeed, the Institute of Numerical Analysis
devoted only a marginal amount of its efforts
to problems in number theory, and the
influential presence of the Lehmers since
1950 changed this situation only slightly,44

but computation time was eventually granted
for this undertaking, and it was pursued
mainly by John Selfridge, at the time one of
Dick’s graduate students.

The mathematical difficulties were over-
come by further refinements of the Kummer-
like criteria. This was done partly by Vandiver
himself, and partly based on independent
work by the Finnish mathematician Kustaa
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Inkeri (1908–1997). The results of this effort
were published in two consecutive papers (still
only in the Proceedings), that covered expo-
nents p, 2,000 , p , 2,520 and 2,520 , p ,

4,002, respectively.45 Beyond the satisfaction
for having proved Fermat’s last theorem for all
these exponents, Vandiver continued to stress
the importance of two other facts encountered
along the way: the high percentage of regular
primes still appearing in this range, and the
fact that all ranks of irregularity found were
smaller than 3.

Concluding remarks
The use of electronic computers did not

become a mainstream approach in number
theory, certainly not in the short run. Neither
did research interest in Fermat’s last theorem.
Still, the kind of work initiated by Vandiver
and his collaborators opened a new direction
of research, which is still alive and well.
Calculation techniques with digital computers
were rigorously developed after 1951, but their
use in mathematics in general and in particu-
lar for finding proofs for various questions
related with number theory evolved in a very
slow and hesitant manner. Within this trend,
additional proofs along similar lines continued
to appear up to exponents over one billion,
and case I up to values much higher than
that.46 In fact, Wiles provided a completely
general proof that approached the problem
from a completely different perspective, and
comprised no calculations for specific expo-
nents. And yet, articles in the tradition opened
by Vandiver continued to be published even
after Wiles’ proof.47

Vandiver, at any rate, was never really fond
of the abstract approaches dominant in alge-
bra and number theory during the 20th
century. He believed calculations to be the
essence of the discipline. In 1958, he published
in the National Academy Proceedings an article
devoted to this issue. The venue of publica-
tion, it must be stressed, was an unlikely one
for this kind of nontechnical article. Vandi-
ver’s opinion about computers in number
theory was summarized as follows:

Any investigation in the theory of numbers is

likely to be experimental, at least in its initial

stages. The number theorist may study special

cases of results which he may conjecture to be

true. … [H]e naturally likes to be able to use a

rapid digital computing machines, or other

means, to extend his computations. However,

before the invention of any such machines,

Euler, Gauss, Jacobi, Cauchy, and others of

their time obtained some of the most impor-

tant results we have concerning whole num-

bers. These men were expert computers and

published papers containing extensive numer-

ical data they had used in testing conjectures,

which they were later able to prove or prove

with modifications.48

The mathematical careers of Vandiver and
of the Lehmers (see Figures 5 and 6) were self-
styled in many senses and this is also manifest
in their original efforts to harness electronic
digital computers to problems in number
theory. They were convinced of the impor-
tance of continued publication of tables, data,
and calculations, and they spared no effort to
doing this in their own fields of research and
expertise.
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